Simplifying Polynomial Expressions
In mathematics, simplifying polynomial expressions is a fundamental skill. Let's explore how to simplify the expression:
(13n<sup>2</sup> + 11n - 2n<sup>4</sup>) + (-13n<sup>2</sup> - 3n - 6n<sup>4</sup>)
Step 1: Remove the Parentheses
Since we are adding the two polynomials, the parentheses do not affect the signs of the terms. We can simply remove them:
13n<sup>2</sup> + 11n - 2n<sup>4</sup> - 13n<sup>2</sup> - 3n - 6n<sup>4</sup>
Step 2: Combine Like Terms
Identify terms with the same variable and exponent. Combine their coefficients:
- n<sup>4</sup> terms: -2n<sup>4</sup> - 6n<sup>4</sup> = -8n<sup>4</sup>
- n<sup>2</sup> terms: 13n<sup>2</sup> - 13n<sup>2</sup> = 0
- n terms: 11n - 3n = 8n
Step 3: Write the Simplified Expression
Combine the simplified terms in descending order of their exponents:
-8n<sup>4</sup> + 8n
Therefore, the simplified expression of (13n<sup>2</sup> + 11n - 2n<sup>4</sup>) + (-13n<sup>2</sup> - 3n - 6n<sup>4</sup>) is -8n<sup>4</sup> + 8n.